Walk-through
This is an in-depth tutorial that demonstrates some of Graphique’s core functionality. We’ll walk through the process of creating a useful, interactive graphic that gradually builds in complexity. By going through it, you should get a sense for how Graphique:
- maps data properties to visual properties using Aesthetics and scales
- includes helpful pieces for interpreting visualized data (labels, legends, tooltips, and more)
- is configurable — easily adjust/replace defaults (scales, tooltips, themes, etc.)
- can be integrated with React’s state management to create stateful visualizations
First we’ll install the necessary dependencies for our example.
npm i @graphique/graphique @graphique/geom-point @graphique/datasets d3-scale
Show me the data
We’ll be using Graphique’s gapminder
dataset that contains
various information on countries over time. It’s an array of objects that looks like this:
[
{
"country": "Afghanistan",
"continent": "Asia",
"year": 1952,
"lifeExp": 28.801,
"pop": 8425333,
"gdpPercap": 779.4453,
},
...
{
"country": "Zimbabwe",
"continent": "Africa",
"year": 2007,
"lifeExp": 43.487,
"pop": 12311143,
"gdpPercap": 469.7093,
},
]
A layered approach
For this example, we’re interested in the relationship between GDP and life expectancy — the wealth (and health) of nations. We also would like to incorporate each country’s population and continent, as well as the measurement year. We’ll start with the basics and build our way up to a useful, interactive graphic.
The base
To begin, we’ll look at only the most recent year’s data (2007). This is what you get for free when plugging in your data and mapping a coordinate system (x
, y
Aesthetics):
import { GG } from '@graphique/graphique';
import { gapminder } from '@graphique/datasets';
const data = gapminder.filter(d => d.year === 2007);
export const GapMinderChart = () => {
return (
<GG
data={data}
aes={{
x: (d) => d.gdpPercap,
y: (d) => d.lifeExp
}}
isContainerWidth
/>
);
};
Using the defaults, our (empty) graphic gets:
- a coordinate system with a grid
- scaled axes with ticks and tick labels
- and dimensions (
its parent container's width
×450px
)
This is a good start but isn’t very useful without including any Geometries (Geoms
).
Draw the countries
Let’s draw these countries in the form of a scatterplot. We can turn what we have into a scatterplot simply by including GeomPoint
as a child.
import { GG } from '@graphique/graphique';
import { GeomPoint } from '@graphique/geom-point';
import { gapminder } from '@graphique/datasets';
const data = gapminder.filter(d => d.year === 2007);
export const GapMinderChart = () => {
return (
<GG
data={data}
aes={{
x: (d) => d.gdpPercap,
y: (d) => d.lifeExp
}}
isContainerWidth
>
<GeomPoint />
</GG>
);
};
Data visualized! Each object in our data
array gets a point positioned according to what’s returned from the x
and y
accessor methods in aes
. You might also notice we now have a (very basic) tooltip shown when hovering near each point.
This is good for only a few lines of code, but still pretty crude. We’ll add some polish to our graphic next.
Starting to customize
We’ll add some readable labels and change the look of the points to tighten this up a little.
import { GG, Labels } from '@graphique/graphique';
import { GeomPoint } from '@graphique/geom-point';
import { gapminder } from '@graphique/datasets';
import styles from './gapMinder.module.css';
const data = gapminder.filter(d => d.year === 2007);
export const GapMinderChart = () => {
return (
<GG
data={data}
aes={{
x: (d) => d.gdpPercap,
y: (d) => d.lifeExp,
label: (d) => d.country,
}}
isContainerWidth
>
<GeomPoint
attr={{
opacity: 0.7,
fill: '#298670',
r: 3,
}}
/>
<Labels
x='GDP per capita'
y='Life expectancy (years)'
header={
<span className={styles.title}>The health and wealth of nations</span>
}
/>
</GG>
);
};
We’re on our way to something useful now — our axes are labeled and and we put a title in our header.
Notice our tooltip has the x and y values labeled now (based on our axis labels), and by mapping the label
Aesthetic to each country
, we can also see which country is which.
Use and format log x scale
Since it is so skewed in this dataset, it makes sense to visualize GDP along a log scale instead of the linear one Graphique created for us by default. Rather than transforming these values ourselves, we can pass scaleLog
from d3-scale
into Graphique’s ScaleX
to modify its behavior.
We’ll also format GDP shown in the tooltip and the x tick labels in terms of inflation-adjusted dollars. In addition, we can determine the number of x ticks to show based on the container width — this way, the x axis won’t be cluttered in narrow charting conditions (e.g. on phones).
We’ll define some utility formatting functions in a separate file to import and use in our visualization.
import { GG, Labels, ScaleX, Tooltip } from '@graphique/graphique';
import { GeomPoint } from '@graphique/geom-point';
import { gapminder } from '@graphique/datasets';
import { scaleLog } from 'd3-scale';
import { formatGDP, formatXTick, getNumXTicks } from './formattingUtils';
import styles from './gapMinder.module.css';
const data = gapminder.filter(d => d.year === 2007);
export const GapMinderChart = () => {
return (
<GG
data={data}
aes={{
x: (d) => d.gdpPercap,
y: (d) => d.lifeExp,
label: (d) => d.country,
}}
isContainerWidth
>
<GeomPoint
attr={{
opacity: 0.7
fill: '#298670',
r: 3,
}}
/>
<ScaleX
type={scaleLog}
format={formatXTick}
numTicks={getNumXTicks}
/>
<Tooltip xFormat={formatGDP} />
<Labels
x='GDP per capita'
y='Life expectancy (years)'
header={
<span className={styles.title}>The health and wealth of nations</span>
}
/>
</GG>
);
};
Nice! This is definitely less compressed, and we now have dynamically formatted labels for both the x ticks and tooltip GDP values.
More encoding
Next, let’s encode more information that we wanted to include in our chart — coloring the points by continent and sizing by population.
We can do this simply by mapping properties in our data set to additional Aesthetic properties in aes
(and removing the directly-applied attributes in GeomPoint
).
We’ll also include a margin
around the visualization area to account for the variety of point sizes and give our points some room to breathe along the boundaries.
import { GG, Labels, ScaleX, Tooltip } from '@graphique/graphique';
import { GeomPoint } from '@graphique/geom-point';
import { gapminder } from '@graphique/datasets';
import { scaleLog } from 'd3-scale';
import { formatGDP, formatXTick, getNumXTicks } from './formattingUtils';
import styles from './gapMinder.module.css';
const data = gapminder.filter(d => d.year === 2007);
export const GapMinderChart = () => {
return (
<GG
data={data}
aes={{
x: (d) => d.gdpPercap,
y: (d) => d.lifeExp,
label: (d) => d.country,
fill: (d) => d.continent,
stroke: (d) => d.continent,
size: (d) => d.pop,
}}
isContainerWidth
margin={{ top: 30, right: 30, left: 35 }}
>
<GeomPoint
attr={{ fillOpacity: 0.35, strokeOpacity: 0.4 }}
focusedStyle={{ fillOpacity: 1 }}
/>
<ScaleX
type={scaleLog}
format={formatXTick}
numTicks={getNumXTicks}
/>
<Tooltip xFormat={formatGDP} />
<Labels
x='GDP per capita'
y='Life expectancy (years)'
header={
<span className={styles.title}>The health and wealth of nations</span>
}
/>
</GG>
);
};
Notice how we conventiently created a few additional scales for the points — categorical fill and stroke scales for coloring based on the country’s continent and a continuous radius scale to size the points based on each country’s population
To make these new scales interpretable, we’ll add legends for them next.
Including legends
Adding legends to explain what the colors and sizes of the points represent is straightforward,
and we can import these Geom-level legend components alongside GeomPoint
.
import {
GG, Labels, ScaleX, Tooltip, LegendOrientation,
} from '@graphique/graphique';
import { GeomPoint, Legend, SizeLegend } from '@graphique/geom-point';
import { gapminder } from '@graphique/datasets';
import { scaleLog } from 'd3-scale';
import { formatGDP, formatPop, formatXTick, getNumXTicks } from './formattingUtils';
import styles from './gapMinder.module.css';
const data = gapminder.filter(d => d.year === 2007);
export const GapMinderChart = () => {
return (
<GG
data={data}
aes={{
x: (d) => d.gdpPercap,
y: (d) => d.lifeExp,
label: (d) => d.country,
fill: (d) => d.continent,
size: (d) => d.pop,
}}
margin={{ top: 30, right: 30, left: 35 }}
isContainerWidth
>
<GeomPoint attr={{ fillOpacity: 0.35, strokeOpacity: 0.4 }} />
<ScaleX
type={scaleLog}
format={formatXTick}
numTicks={getNumXTicks}
/>
<Tooltip xFormat={formatGDP} />
<Labels
x='GDP per capita'
y='Life expectancy (years)'
header={
<span className={styles.title}>
The health and wealth of nations
</span>
}
/>
<div className={styles.legends}>
<Legend
orientation={LegendOrientation.H}
title={<span className={styles['legend-title']}>Continent</span>}
/>
<SizeLegend
title={<span className={styles['legend-title']}>Population</span>}
format={formatPop}
/>
</div>
</GG>
);
};
These legends are automatically configured based on the data
we’ve passed in and the Aesthetic mappings we’ve defined.
If you didn’t already, try clicking on the continent legend members and see what happens.
Custom Theme
Before we go any further, let’s make the visualization area a little more minimal by removing the grid lines and only drawing the x/y axis lines.
import {
GG, Labels, ScaleX, Tooltip, LegendOrientation, Theme,
} from '@graphique/graphique';
import { GeomPoint, Legend, SizeLegend } from '@graphique/geom-point';
import { gapminder } from '@graphique/datasets';
import { scaleLog } from 'd3-scale';
import { formatGDP, formatPop, formatXTick, getNumXTicks } from './formattingUtils';
import styles from './gapMinder.module.css';
const data = gapminder.filter(d => d.year === 2007);
export const GapMinderChart = () => {
return (
<GG
data={data}
aes={{
x: (d) => d.gdpPercap,
y: (d) => d.lifeExp,
label: (d) => d.country,
fill: (d) => d.continent,
size: (d) => d.pop,
}}
margin={{ top: 30, right: 30, left: 35 }}
isContainerWidth
>
<GeomPoint attr={{ fillOpacity: 0.35, strokeOpacity: 0.4 }} />
<ScaleX
type={scaleLog}
format={formatXTick}
numTicks={getNumXTicks}
/>
<Tooltip xFormat={formatGDP} />
<Labels
x='GDP per capita'
y='Life expectancy (years)'
header={
<span className={styles.title}>
The health and wealth of nations
</span>
}
/>
<div className={styles.legends}>
<Legend
orientation={LegendOrientation.H}
title={<span className={styles['legend-title']}>Continent</span>}
/>
<SizeLegend
title={<span className={styles['legend-title']}>Population</span>}
format={formatPop}
/>
</div>
<Theme grid={{ stroke: null }} axis={{ showAxisLine: true }} />
</GG>
);
};
This is an informative and polished chart at this point, but let’s see if we can make it even more engaging and descriptive by customizing what happens when a user focuses/hovers over a point.
Stateful interactions
Instead of the default tooltip, let’s show the focused country’s GDP and life expectancy through the years. We can add this historical context in the form of a connected scatterplot by conditionally rendering separate Geoms based on the currently-focused country.
Introducing state
We can use React’s useState
hook to directly modify and respond to changes in our visualization’s state.
Let’s start by removing the tooltip for GeomPoint
and instead use GeomLabel
to show only the focused country’s name.
We could create this label with a customized tooltip, but why we might start this way should be clear as we continue.
import { useState } from 'react';
import {
GG, Labels, ScaleX, Tooltip, LegendOrientation, Theme,
} from '@graphique/graphique';
import { GeomPoint, Legend, SizeLegend } from '@graphique/geom-point';
import { GeomLabel } from '@graphique/geom-label';
import { gapminder, type GapMinder } from '@graphique/datasets';
import { scaleLog } from 'd3-scale';
import { formatPop, formatXTick, getNumXTicks } from './formattingUtils';
import styles from './gapMinder.module.css';
const data = gapminder.filter(d => d.year === 2007);
export const GapMinderChart = () => {
const [focusedCountry, setFocusedCountry] = useState<GapMinder | undefined>();
return (
<GG
data={data}
aes={{
x: (d) => d.gdpPercap,
y: (d) => d.lifeExp,
label: (d) => d.country,
fill: (d) => d.continent,
stroke: (d) => d.continent,
size: (d) => d.pop,
}}
margin={{ top: 30, right: 30, left: 35 }}
isContainerWidth
>
<GeomPoint<GapMinder>
attr={{ fillOpacity: 0.35, strokeOpacity: 0.4 }}
focusedStyle={{ fillOpacity: 1 }}
onDatumFocus={(d) => setFocusedCountry(d?.[0])}
onExit={() => setFocusedCountry(undefined)}
/>
{focusedCountry && (
<GeomLabel
data={[focusedCountry]}
attr={{
fill: 'currentColor',
stroke: themedColor, // (defined outside of demo)
strokeOpacity: 0.7,
fontSize: '0.8rem',
}}
isAnimated={false}
/>
)}
<ScaleX type={scaleLog} format={formatXTick} numTicks={getNumXTicks} />
<Tooltip content={() => null} />
<Labels
x="GDP per capita"
y="Life expectancy (years)"
header={
<span className={styles.title}>
The health and wealth of nations
</span>
}
/>
<div className={styles.legends}>
<Legend
orientation={LegendOrientation.H}
title={<span className={styles['legend-title']}>Continent</span>}
/>
<SizeLegend
title={<span className={styles['legend-title']}>Population</span>}
format={formatPop}
/>
</div>
<Theme grid={{ stroke: null }} axis={{ showAxisLine: true }} />
</GG>
);
};
This is a good start to build off of for our connected scatterplot on focus, but it’ll take some work to manage state more effectively — notice what happens when focusing data after using the continent legend to filter out points 😬.
React is rerendering our chart (with its defaults applied) every time a country is focused (and our component’s state is updated). To prevent this, we can also use a similar approach with our legend/legend selections and manage those directly.
Fixed scales
Now that we’re starting to manage our visualization’s state on our own (outside of Graphique), we can also do the same for our legend and control the filtering behavior more directly. You can think of this as turning autopilot off.
For our connected scatterplot, we’ll also want to account for the full range of countries’ x/y values (or at least the full range based on the selected continents), not just for the single year we’re visualizing points for now. To do this, we can create a fixed x scale and a fixed y scale with custom domains.
import { useState, useMemo } from 'react';
import {
GG, Labels, ScaleX, ScaleY, ScaleFill, ScaleStroke, Tooltip, LegendOrientation, Theme,
} from '@graphique/graphique';
import { GeomPoint, Legend, SizeLegend } from '@graphique/geom-point';
import { GeomLabel } from '@graphique/geom-label';
import { gapminder, type GapMinder } from '@graphique/datasets';
import { scaleLog } from 'd3-scale';
import { extent } from 'd3-array';
import { formatPop, formatXTick, getNumXTicks } from './formattingUtils';
import styles from './gapMinder.module.css';
const data = gapminder.filter(d => d.year === 2007);
const continents = Array.from(new Set(data.map((d) => d.continent))).sort();
export const GapMinderChart = () => {
const [focusedCountry, setFocusedCountry] = useState<GapMinder | undefined>();
const [selectedContinents, setSelectedContinents] = useState(continents);
const includedCountries = useMemo(
() => data.filter((d) => selectedContinents.includes(d.continent)),
[selectedContinents],
);
const xExtent = useMemo(
() =>
extent(
gapminder.filter((d) => selectedContinents.includes(d.continent)),
(d) => d.gdpPercap,
),
[selectedContinents],
);
const yExtent = useMemo(
() =>
extent(
gapminder.filter((d) => selectedContinents.includes(d.continent)),
(d) => d.lifeExp,
),
[selectedContinents],
);
return (
<GG
data={includedCountries}
aes={{
x: (d) => d.gdpPercap,
y: (d) => d.lifeExp,
label: (d) => d.country,
fill: (d) => d.continent,
stroke: (d) => d.continent,
size: (d) => d.pop,
}}
margin={{ top: 30, right: 30, left: 35 }}
isContainerWidth
>
<GeomPoint<GapMinder>
key="countries"
aes={{ key: (d) => d.country }}
attr={{ fillOpacity: 0.35, strokeOpacity: 0.4 }}
focusedStyle={{ fillOpacity: 1 }}
onDatumFocus={(d) => setFocusedCountry(d?.[0])}
onExit={() => setFocusedCountry(undefined)}
/>
{focusedCountry && (
<GeomLabel
data={[focusedCountry]}
attr={{
fill: 'currentColor',
stroke: themedColor, // (defined outside of demo)
strokeOpacity: 0.7,
fontSize: '0.8rem',
}}
isAnimated={false}
/>
)}
<ScaleX
type={scaleLog}
format={formatXTick}
numTicks={getNumXTicks}
domain={xExtent}
/>
<ScaleY domain={yExtent} />
<ScaleFill domain={continents} />
<ScaleStroke domain={continents} />
<Tooltip content={() => null} />
<Labels
x="GDP per capita"
y="Life expectancy (years)"
header={
<span className={styles.title}>
The health and wealth of nations
</span>
}
/>
<div className={styles.legends}>
<Legend
orientation={LegendOrientation.H}
title={<span className={styles['legend-title']}>Continent</span>}
onSelection={(v) => {
setSelectedContinents((prev) => {
if (prev.includes(v) && prev.length === 1) {
return continents
}
if (prev.includes(v)) {
return prev.filter((p) => p !== v)
}
return [...prev, v]
})
if (focusedCountry?.continent === v) {
setFocusedCountry(undefined)
}
}}
/>
<SizeLegend
title={<span className={styles['legend-title']}>Population</span>}
format={formatPop}
/>
</div>
<Theme grid={{ stroke: null }} axis={{ showAxisLine: true }} />
</GG>
);
};
Scales updated! Besides the expanded x and y scales, the fill and stroke scales (and continent names in the legend) are now ordered alphabetically, and any filters applied with the continent legend remain applied across interactions. We left the radius scale as it was, but if we wanted to, we could’ve just as easily fixed that one, too.
More conditional Geoms
Nearly there! This is where we add the connected scatterplot for each focused country to show the journey it’s taken through history.
We already added a conditional GeomLabel
, now let’s add GeomLine
and another GeomPoint
based on a very similar condition.
import { useState, useMemo } from 'react';
import {
GG, Labels, ScaleX, ScaleY, ScaleFill, ScaleStroke, Tooltip, LegendOrientation, Theme,
} from '@graphique/graphique';
import { GeomPoint, Legend, SizeLegend } from '@graphique/geom-point';
import { GeomLabel } from '@graphique/geom-label';
import { GeomLine } from '@graphique/geom-line';
import { gapminder, type GapMinder } from '@graphique/datasets';
import { scaleLog } from 'd3-scale';
import { extent } from 'd3-array';
import { formatPop, formatXTick, getNumXTicks } from './formattingUtils';
import styles from './gapMinder.module.css';
const data = gapminder.filter(d => d.year === 2007);
const continents = Array.from(new Set(data.map((d) => d.continent))).sort();
export const GapMinderChart = () => {
const [focusedCountry, setFocusedCountry] = useState<GapMinder | undefined>();
const [selectedContinents, setSelectedContinents] = useState(continents);
const focusedCountryTrend = useMemo(
() => gapminder.filter((d) => d.country === focusedCountry?.country),
[focusedCountry],
);
const includedCountries = useMemo(
() => data.filter((d) => selectedContinents.includes(d.continent)),
[selectedContinents],
);
const xExtent = useMemo(
() =>
extent(
gapminder.filter((d) => selectedContinents.includes(d.continent)),
(d) => d.gdpPercap,
),
[selectedContinents],
);
const yExtent = useMemo(
() =>
extent(
gapminder.filter((d) => selectedContinents.includes(d.continent)),
(d) => d.lifeExp,
),
[selectedContinents],
);
return (
<GG
data={includedCountries}
aes={{
x: (d) => d.gdpPercap,
y: (d) => d.lifeExp,
label: (d) => d.country,
fill: (d) => d.continent,
stroke: (d) => d.continent,
size: (d) => d.pop,
}}
margin={{ top: 30, right: 30, left: 35 }}
isContainerWidth
>
{focusedCountryTrend && (
<>
<GeomLine
data={focusedCountryTrend}
showTooltip={false}
attr={{ strokeWidth: 2, strokeOpacity: 0.8 }}
isAnimated={false}
/>
<GeomPoint
data={focusedCountryTrend}
showTooltip={false}
attr={{ fill: themedColor, fillOpacity: 0.8, r: 2.3 }}
isAnimated={false}
/>
</>
)}
<GeomPoint<GapMinder>
key="countries"
aes={{ key: (d) => d.country }}
attr={{ fillOpacity: 0.35, strokeOpacity: 0.4 }}
focusedStyle={{ fillOpacity: 1 }}
onDatumFocus={(d) => setFocusedCountry(d?.[0])}
onExit={() => setFocusedCountry(undefined)}
/>
{focusedCountry && (
<GeomLabel
data={[focusedCountry]}
attr={{
fill: 'currentColor',
stroke: themedColor, // (defined outside of demo)
strokeOpacity: 0.7,
fontSize: '0.8rem',
}}
isAnimated={false}
/>
)}
<ScaleX
type={scaleLog}
format={formatXTick}
numTicks={getNumXTicks}
domain={xExtent}
/>
<ScaleY domain={yExtent} />
<ScaleFill domain={continents} />
<ScaleStroke domain={continents} />
<Tooltip content={() => null} />
<Labels
x="GDP per capita"
y="Life expectancy (years)"
header={
<span className={styles.title}>
The health and wealth of nations
</span>
}
/>
<div className={styles.legends}>
<Legend
orientation={LegendOrientation.H}
title={<span className={styles['legend-title']}>Continent</span>}
onSelection={(v) => {
setSelectedContinents((prev) => {
if (prev.includes(v) && prev.length === 1) {
return continents
}
if (prev.includes(v)) {
return prev.filter((p) => p !== v)
}
return [...prev, v]
})
if (focusedCountry?.continent === v) {
setFocusedCountry(undefined)
}
}}
/>
<SizeLegend
title={<span className={styles['legend-title']}>Population</span>}
format={formatPop}
/>
</div>
<Theme grid={{ stroke: null }} axis={{ showAxisLine: true }} />
</GG>
);
};
This is the visualization we were hoping to create! Pretty useful (especially when combined with React’s state management), relatively engaging and informative, and not too painful to make. The only thing left is a matter of organization/composition and structuring this relatively complex visualization in a more “idiomatic React” way.
Finished product
As a last step, instead of one big component that does everything, let’s extract some of this functionality into separate React components and handle our related state with a React Context.
That’s all for now, but this should open up the world of possibilities when using Graphique to create interactive visualizations in your React UIs. Enjoy!